Algebraic Analysis for Singular Statistical Estimation
نویسنده
چکیده
This paper clarifies learning efficiency of a non-regular parametric model such as a neural network whose true parameter set is an analytic variety with singular points. By using Sato’s b-function we rigorously prove that the free energy or the Bayesian stochastic complexity is asymptotically equal to λ1 log n− (m1 − 1) log log n+constant, where λ1 is a rational number, m1 is a natural number, and n is the number of training samples. Also we show an algorithm to calculate λ1 and m1 based on the resolution of singularity. In regular models, 2λ1 is equal to the number of parameters and m1 = 1, whereas in non-regular models such as neural networks, 2λ1 is smaller than the number of parameters and m1 ≥ 1.
منابع مشابه
Application of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel
In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....
متن کاملRobust H_∞ Controller design based on Generalized Dynamic Observer for Uncertain Singular system with Disturbance
This paper presents a robust ∞_H controller design, based on a generalized dynamic observer for uncertain singular systems in the presence of disturbance. The controller guarantees that the closed loop system be admissible. The main advantage of this method is that the uncertainty can be found in the system, the input and the output matrices. Also the generalized dynamic observer is used to est...
متن کاملApproximation of Spectral Intervals and Leading Directions for Differential-Algebraic Equation via Smooth Singular Value Decompositions
This paper is devoted to the numerical approximation of Lyapunov and Sacker-Sell spectral intervals for linear differential-algebraic equations (DAEs). The spectral analysis for DAEs is improved and the concepts of leading directions and solution subspaces associated with spectral intervals are extended to DAEs. Numerical methods based on smooth singular value decompositions are introduced for ...
متن کاملInverse Problems for Linear Ill-posed Differential-algebraic Equations with Uncertain Parameters
This paper describes a minimax state estimation approach for linear differential-algebraic equations (DAEs) with uncertain parameters. The approach addresses continuous-time DAEs with non-stationary rectangular matrices and uncertain bounded deterministic input. An observation’s noise is supposed to be random with zero mean and unknown bounded correlation function. Main result is a Generalized ...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملMinimax state estimation for linear stationary differential-algebraic equations ?
This paper presents a generalization of the minimax state estimation approach for singular linear Differential-Algebraic Equations (DAE) with uncertain but bounded input and observation’s noise. We apply generalized Kalman Duality principle to DAE in order to represent the minimax estimate as a solution of a dual control problem for adjoint DAE. The latter is then solved converting the adjoint ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999